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ABSTRACT
Taking advantage of recently released hybrid multicore architec-
tures, such as the Intel Xeon+FPGA machine, where the FPGA
has coherent access to the main memory through the QPI bus, we
explore the benefits of specializing operators to hardware. We fo-
cus on two commonly used SQL operators for strings: LIKE, and
REGEXP_LIKE, and provide a novel and efficient implementa-
tion of these operators in reconfigurable hardware. We integrate
the hardware accelerator into MonetDB, a main-memory column
store, and demonstrate a significant improvement in response time
and throughput. Our Hardware User Defined Function (HUDF)
can speed up complex pattern matching by an order of magnitude
in comparison to the database running on a 10-core CPU. The in-
sights gained from integrating hardware based string operators into
MonetDB should also be useful for future designs combining hard-
ware specialization and databases.

1. INTRODUCTION
Existing relational engines provide a number of basic mecha-

nisms for processing strings with different trade-offs between gen-
erality and performance: LIKE is used to find (multiple) substrings,
REGEXP_LIKE is used to evaluate regular expressions on strings
and is more costly. Queries with CONTAINS run on a pre-built in-
verted index, which is quick but has additional costs in maintaining
the index. Indexes on text (e.g., suffix trees, n-grams, or inverted
indexes) occupy a substantial amount of space, require repeated
lookups to match several patterns, must be updated on insertion,
and in the case of the inverted index, have potentially stale data and
need to be rebuilt periodically.

Using a commercial row store (referred to as DBx) and an open
source column store (MonetDB) the above mentioned trade-offs
between generality and performance in string matching can be pre-
cisely characterized. In Table 1, we show the response time when
executing queries using CONTAINS, LIKE and REGEXP_LIKE.
These clauses plug into the following simple query:
SELECT count (∗ ) FROM a d d r e s s _ t a b l e WHERE add r . . .

As Table 1 shows, the response times increase by one order of mag-
nitude steps with operator complexity (transitioning from an in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035954

Table 1: Comparison of string matching using different SQL
commands in MonetDB and a commercial database, on 2.5 Mio.
records

Query (WHERE clause) Response time (s)
Database MonetDB DBx
CONTAINS(’Alan & Turing & Cheshire’) - 0.033
LIKE ’%Alan%Turing%Cheshire%’ 0.021 0.431
REGEXP_LIKE(’Alan.*Turing.*Cheshire’) 0.361 8.864

dex lookup in CONTAINS to full regular expression matching with
REGEXP_LIKE). Note that the performance of DBx and MonetDB
should not be directly compared because DBx runs the query in a
single thread, while MonetDB uses 10 threads. It is the common
trend that we want to highlight.

The problem of costly regular expression matching is well known
but it is becoming pressing to solve given the increasing amount of
text from social media enriching relational data. There is a trend
toward using accelerators (i.e., be it many cores like Xeon-Phi,
GPUs, or FPGAs), but most of these solutions have two short-
comings: 1) the data needs to be reformatted to reap the benefits
of SIMD execution (e.g., Xeon-Phi) and 2) data needs to be parti-
tioned between main memory and accelerator memory (e.g., GPUs
or FPGAs on the PCI bus). While performance gains have been
shown, the integration within a database engine is not straightfor-
ward because of these data locality, data formats, and data move-
ment overheads.

Hybrid multicore architectures where reconfigurable hardware
is embedded as a normal processor in the system reduce the above
mentioned limitations. The Intel Xeon+FPGA platform [25] and
IBM’s CAPI for Power8 [35] are two examples of such hybrid
architectures. The Intel Xeon+FPGA prototype system provides
cache-coherent memory access over a QPI connection, CAPI does
so over PCIe for reconfigurable hardware. The former is better
suited for random access at cache-line granularity, the latter for
coarse grained access. The shared memory architecture of these
systems enables tight coupling between Hardware User Defined
Functions (HUDFs) and the database engine without having to ex-
plicitly move data to and from the accelerator.

The paper makes the following contributions:

• Novel fully runtime parameterizable regular expression en-
gine tailored to SQL

• Full integration of a hardware-based regular expression match-
ing engine as an UDF into MonetDB.

• Showing predictable, complexity-independent performance
for complex patterns with one to two orders of magnitude
speed up over a 10-core CPU.



• Insights in how emerging hybrid architectures, e.g., Intel’s
Xeon+FPGA and IBM’s CAPI, can be used to accelerate
database operators and what their current limitations are.

In this work we design an accelerator with multiple parallel en-
gines, and even though in our case they are all used for the same
type of operator, in future systems one could partition the FPGA
between different accelerator types. We believe these ideas are
timely, given the trend in hardware specialization, e.g., the SPARC
M7 which includes the on-chip data analytics accelerators (DAX),
ASIC based automaton processors [7, 24], and Microsoft’s Cat-
apult [29] in data center scale deployments. The paper provides
valuable data points for the development of future accelerators or
processor extensions providing pattern matching functionality, sim-
ilar to vector instruction units or specialized hardware engines. It
also acts as an evaluation of the Xeon+FPGA system’s usefulness
for RDBMS workloads and provides some suggestions for its fu-
ture versions. We found for instance the NUMA bandwidth to be
too low, becoming a limiting factor of performance. This issue
could be alleviated through the addition of cache-coherent memory
on the socket of the FPGA.

2. BACKGROUND

2.1 FPGAs
Field programmable gate arrays (FPGAs) are hardware chips

that can be reprogrammed arbitrarily many times and, once pro-
grammed, behave similarly to application-specific integrated cir-
cuits (ASICs) [36]. They are traditionally programmed using hard-
ware description languages such as Verilog or VHDL, but recently
high level languages and synthesis tools have emerged which en-
able translation of C/C++ or OpenCL code to logic gates [1, 42].

Since the on-chip static random access memory on FPGAs (called
block RAMs or BRAMs) is limited to a few megabytes, stand-
alone boards are often used as a “bump-in-the-wire“ accelerator
for stream processing (e.g., [21, 22]) to avoid storing much data
or computational state. However, modern FPGA boards usually
have DDR memory in the range of a few gigabytes attached to the
FPGA, though at a higher access latency than the on-chip memory.
An alternative to these designs is the hybrid system we consider
here.

2.2 Intel Xeon+FPGA Prototype System
The system used throughout this paper is an experimental sys-

tem released under the Intel-Altera Heterogeneous Architecture Re-
search Platform1 program [25].
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Figure 1: Architecture of the Xeon+FPGA prototype

As shown in Figure 1, this system has two sockets, one is occu-
pied by a 10-core CPU (Intel Xeon E5-2680 v2) and the other by
1Results in this publication were generated using pre-production
hardware and software donated to us by Intel, and may not reflect
the performance of production or future systems.

the FPGA (Altera Stratix V 5SGXEA). Each socket is a NUMA
region, however in this system it is only possible to install memory
in the CPU’s NUMA region. Our machine has 96 GB main mem-
ory. In contrast to most other systems with accelerators, the FPGA
has direct, cache coherent access to the main memory through the
QPI bus. The FPGA accesses the main memory at 512 bit (cache
line) granularity; we measured the peak performance to be close
to 6.5 GB/s for most read-intensive workloads. On the CPU we
measured up to 25 GB/s read bandwidth, less than the theoretical
maximum in Figure 1. The reason for the low read bandwidth on
the FPGA is only partially caused by the QPI link. The prototype
QPI endpoint implementation on the FPGA limits bandwidth as
well, since it only operates at 200 MHz. However, since this is an
encrypted module provided with the prototype we cannot modify
or improve it.

The system runs Ubuntu 14.04 extended with a special kernel
module for communication with the FPGA. To interact with the
FPGA, Intel provides an Accelerator Abstraction Layer (AAL) as
a library. In an application that uses the FPGA, first a handshake
between the software and hardware verifies that the desired Accel-
erator Functional Unit (AFU, in essence the user logic) has been
instantiated in hardware. Then a so called Device Status Memory
(DSM) page is allocated to share control and status information
between the software and hardware. The DSM and any application
memory that needs to be shared with the FPGA is allocated through
the AAL library. This allocates memory at the granularity of 2 MB
and pins it to contiguous physical regions. Pinning is necessary to
ensure that accesses from hardware to main memory would never
result in page faults. By default the Intel libraries allow the user to
allocate a total of 2 GBs of memory in this fashion. By changing the
kernel module and increasing the size of the pagetable on the FPGA
we raised this to 4 GB. This is however just a current limitation
of the libraries accompanying the prototype platform and the pro-
vided hardware modules. We expect this limitation to disappear in
a future versions, in which almost all the memory should be share-
able with the FPGA, similarly to direct memory access (DMA) for
PCIe-attached devices, such as network cards or GPUs.

The FPGA is a standard device and can be programmed through
the vendor’s HDL tool chain. Intel provides a pre-compiled com-
ponent that implements the QPI interface, including a 64 KB direct-
mapped cache. The above mentioned virtual pages are accessed by
the hardware through a pagetable data structure that is populated
by software during memory allocation but resides on the FPGA
on-chip memory (BRAM). The cost of virtual-to-physical address
translation is constant and negligible.

2.3 Background on MonetDB

2.3.1 Data Storage Model
MonetDB is an open source column store. It stores relational ta-

bles as a collection of Binary Association Tables (BATs). A BAT
consists of two columns, one containing an ID and the other the
value (OID,value). This data layout is convenient for fixed
size data types such as integers, floats, etc. For variable length
data types such as strings, MonetDB combines heap memory with
a BAT containing offsets into this heap, see Figure 2. To access a
string with a specific OID the database will first read the offset at
the corresponding index in the BAT and then read the string at this
offset in the heap memory. The heap also contains some meta-data
and padding between the strings, but the length of the strings is not
stored, instead they are null terminated.

MonetDB’s BAT data structures are a good match for the FPGA’s
dataflow type of execution because they can be read sequentially,
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Figure 2: Data layout in MonetDB for variable-length data

which simplifies the FPGA logic. Note that in our case the logic
accessing the strings is more complex as it needs to access a heap
instead of a linear data structure.

2.3.2 User Defined Functions
User defined functions (UDFs) are a natural way for extending

databases to implement a new functionality or to add an optimized
version of certain database operators. UDFs present a promising
way to extend off-the-shelf databases with hardware operators to
accelerate complex queries. Currently UDFs in most databases
have strict input and output interfaces, often working on scalar val-
ues instead of batches or BATs, and combining multiple columns of
the same table or columns from different tables is not possible. In
our work, this limits the type of operators which can be accelerated
by the FPGA, ruling out for instance database joins, even though
recent work shows promising steps in this direction [39, 11, 3]. We
believe that having a more flexible UDF interface in databases, and
also being able to provide a cost function for the UDF to the query
optimizer could be beneficial for overall performance.

MonetDB provides the possibility to compile UDFs directly into
the database engine. For our hardware based UDF, we use this in-
terface as a wrapper to call the regular expression operators on the
hardware. MonetDB’s UDF interface further allows UDFs to oper-
ate on an entire BAT instead of single tuples. The UDF receives as
an argument a pointer to a BAT, by operating on a complete BAT
the overhead of calling the UDF is significantly decreased.

3. SYSTEM OVERVIEW
Figure 3 gives an overview of the complete system. On the

CPU side, MonetDB is extended with a regular expression Hard-
ware User Defined Function (HUDF). To provide a simple API for
the MonetDB UDF to interact with the FPGA, we implemented
a Hardware Operator Abstraction Layer (HAL) which uses In-
tel’s AAL library. The FPGA contains the hardware part of the
HAL and four Regex Engines. All engines operate concurrently
and can process different queries. These engines have been de-
signed to be parameterizable at runtime and require no reprogram-
ming of the FPGA: the hardware implements a flexible circuit that
is parametrized to the particular query at runtime. This is done
using a configuration vector (512 bit memory words). In the cur-
rent design, each engine is capable of processing data at the rate of
6.4 GB/s leading to a combined throughput of 25.6 GB/s. On the
current experimental platform, the system throughput is limited by
the QPI connection to around 6.5 GB/s. However this limitation
should disappear in the next generation of the system [28].

Apart from the initial handshake between Software and FPGA,
executed through Intel’s AAL library, all control and data commu-
nication is done through shared memory managed by the HAL. We
modified MonetDB such that database tables and all intermediate
result BATs are stored in this memory. The same applies for result

MonetDB

UDF Regex
Eng 3

Regex
Eng 4

Regex
Eng 1

Regex
Eng 2

AAL AAL

Job
Dist.

HAL HALUser
Query

MonetDB
BATs

Result
BATs

Job Queue

Parameters

Status

1

2
3

3 5 4 4

6

6

7

8

9
CPU

Shared Memory

FPGA

Figure 3: Overview of the system, the numbers show the steps of
executing a regular expression query on the FPGA

BATs produced by the hardware operators. Data structures man-
aged by the HAL, such as the job queue, job parameters and job
status, are also allocated in shared memory. On the hardware side
HAL includes an arbitration module which guarantees fair access
to the shared memory for each Regex Engine on the FPGA.

Thanks to the standard UDF interface, HAL abstraction, and pa-
rameterizable regular expression operators on the FPGA, any regu-
lar expression given by a user query can be offloaded to hardware.
The steps involved in offloading such a user query are explained
below, while the corresponding numbers in Figure 3 show where in
the system these steps take place:

1. A query containing a regular expression is submitted.
2. As part of executing the query, MonetDB calls the UDF. The

regular expression string and the input BAT are provided as
parameters.

3. The UDF converts the regular expression into a configuration
vector, allocates memory for the result BAT, and calls the
HAL to create a new FPGA job.

4. The HAL allocates memory for the job parameters and job
status data structures and populates them.

5. The HAL enqueues a job into the shared memory job queue.
6. The Job Distributor logic inside the HAL on the FPGA fetches

the job from the job queue and assigns it to an idle Regex En-
gine (Engine 3 in this example).

7. The Regex Engine reads the parameters from shared memory
and configures itself with the configuration vector. It then
starts the execution and processes the input BAT.

8. After the engine terminates, it sets the done bit in its status
memory and updates various statistics about the execution.

9. The UDF waits on the done bit and then hands the result BAT
over to MonetDB.

Note that at no stage is the FPGA reconfigured. The design, as de-
scribed, can run four concurrent HUDFs at a time, each of them for
a different query. In the evaluation we provide a breakdown of the
time it takes to allocate a HUDF, configure the Regular Expression
Engines, and execute the complete operator.

In the following three sections we will explain in more detail, the
UDF integration, the HAL abstraction, the Regex Engines and their
internals.



4. INTEGRATION AND INTERFACE
To integrate the FPGA operator into MonetDB the following

challenges had to be addressed: 1) Provide a seamless interface
such that the hardware operator can be embedded into SQL, 2) As-
sure that the FPGA has direct access to the database memory with-
out reformatting or partitioning data, 3) Provide an abstraction to
MonetDB to easily execute and monitor operators on the FPGA.

4.1 Hardware User Defined Function
A common way of extending database functionality is through

user defined functions (UDFs), and we chose this abstraction to
ensure a seamless integration of the hardware operator into Mon-
etDB. MonetDB does not support regular expression processing by
default, but this functionality can be enabled before compile time.
It uses the popular regex library Perl Compatible Regular Expres-
sions (PCRE) to provide the REGEXP_LIKE operator in SQL. For
simple string matching queries the more efficient LIKE operator
can be used instead. Thanks to the UDF abstraction, our hardware
operator takes the same arguments as the software based regular
expression operator does and the two can be used interchangeably.

−− SW ( s u b s t r i n g match ing )
SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE a d d r e s s _ s t r i n g LIKE ’%S t r a s s e%’ ;

−− SW ( r e g u l a r e x p r e s s i o n )
SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE REGEXP_LIKE ( ’ S t r a s s e ’ , a d d r e s s _ s t r i n g ) ;

−− HW ( s u b s t r i n g and r e g u l a r e x p r e s s i o n match ing )
SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE REGEXP_FPGA( ’ S t r a s s e ’ , a d d r e s s _ s t r i n g ) < >0;

The example queries above show how seamlessly the HUDF can
be integrated into any SQL query (see REGEXP_FPGA above).
The HUDF takes a regular expression pattern, e.g., “Strasse” or
“(Josef|Klaus)strasse”, and a column of strings or a string literal as
parameters. The return type is short and in case the input was a
complete column it will return a column of type short. A nonzero
value means that a match was found in the particular string and the
value represents the position of the match’s last character. In case
the value is zero no match has been found.

4.2 Hardware Operator Abstraction Layer
The Hardware Operator Abstraction Layer (HAL) is the abstrac-

tion between the HUDF in the database and the regular expression
Engines on the FPGA. It is implemented on top of Intel’s AAL li-
brary which is required to bootstrap the FPGA and to allocate the
shared memory region. It provides two fundamental functionali-
ties: 1) a memory allocator to manage the 4 GB CPU-FPGA shared
memory region, and 2) an API to create, execute and monitor jobs
on the FPGA.

4.2.1 Memory Allocation
Due to limitations of the hardware modules deployed in the pro-

totype system and its companion kernel driver, the FPGA is not able
to access the whole address space. Additionally the shared memory
has to be pinned, since the FPGA is not able to trigger page faults.
The FPGA has its own pagetable which is loaded once upon initial-
ization. However, due to resource restrictions, this pagetable has a
limited size. These restrictions limit how much memory can be al-
located through the Intel AAL library to be shared with the FPGA.
Currently this limit is 4 GB. To manage this memory region and
make it accessible to MonetDB, we implement a custom memory
allocator as part of the HAL library. This allocator uses slab allo-
cation and manages internally multiple lists for different slab sizes.

When MonetDB allocates memory through our custom memory
allocator a slab that fits the requested size best is returned. By de-
fault MonetDB uses two mechanisms to allocate memory: for small
objects (< 256 KB) it uses malloc and for larger objects, which
are mostly BATs, it uses MMAP. We modified MonetDB to use our
memory allocator to place every BAT in the CPU-FPGA shared
memory, even if their size is smaller than 256 KB. This modifica-
tion ensures that even BATs containing only a few tuples are allo-
cated in the CPU-FPGA shared memory. Allocations smaller than
16 KB are however still handled through malloc as they repre-
sent metadata and other auxiliary structures which are not relevant
to the FPGA operator.

4.2.2 Operator Execution on the FPGA
The UDF can execute and monitor jobs on the FPGA through

the API of the HAL. For each job submitted through the API, HAL
allocates a parameter structure and a status structure in memory
(step 4, Figure 3). Apart from the configuration vector specifying
the regular expression, the following parameters are written to the
parameter structure: a pointer to the offset BAT, a pointer to the
string heap, a pointer to the result BAT, the width of the offsets
and the number of strings in the input. The memory pointers to
these two structures are wrapped into a job descriptor and this is
then enqueued in a shared memory queue which lies in the CPU-
FPGA shared memory (step 5, Figure 3). On the hardware side
HAL provides a Job Distributor module which observes the state
of the Regex Engines and assigns new jobs from the job queue to
the next available Regex Engine (step 6, Figure 3). The Regex
Engine updates the status of the execution to the status structure
in memory, this way it can be monitored by the UDF through the
HAL API. Once the execution is finished the Regex Engine sets the
done bit in this status memory, notifying the UDF that all results
are written to the result BAT (step 8, Figure 3). Since currently the
Intel AAL has no FPGA-to-CPU interrupt support, the UDF has
to busy-wait on the done bit if low latency is desired. Once the
UDF determined that the execution on the FPGA terminated, it can
pass the result BAT to the database (step 9, Figure 3). MonetDB’s
execution model is based on BAT algebra operators which process a
full BAT in a tight for-loop, as a result intermediate results between
operators are fully materialized as BATs.

The pseudo-code below illustrates how the UDF calls the HAL
API to start the operator. Before calling the HAL API, it allocates
the result BAT and generates the configuration vector for the Regex
Engine.

r e g e x p _ f p g a (BAT ∗∗ r e t , BAT ∗ s r c , char ∗ r e g e x ) {
/ / Conver t r e g u l a r e x p r e s s i o n i n t o c o n f i g u r a t i o n v e c t o r
unsigned char r e g e x _ c o n f i g [CFG_VECTOR_WIDTH ] ;
f p g a _ r e g e x _ g e t _ c o n f i g ( regex , r e g e x _ c o n f i g ) ;

/ / A l l o c a t e r e s u l t BAT
BAT∗ r e s u l t _ p t r = BATnew( TYPE_void , TYPE_short , BATcount

( s r c ) , TRANSIENT) ;

/ / Cr ea t e FPGA j o b t h r o u g h HAL
FPGAjob j o b = c r e a t e _ r e g e x _ f p g a _ j o b ( o f f s e t _ p t r , h e a p _ p t r

, r e s u l t _ p t r , count , width , r e g e x _ c o n f i g ) ;

/ / Wait f o r FPGA j o b t o f i n i s h
j o b . done ( ) ;

}

A data arbiter in the HAL hardware module guarantees fair ac-
cess to the shared memory for each Regex Engine by arbitrating the
memory requests. Since each engine accesses memory in mostly
sequential manner, the arbiter optimizes memory access by schedul-
ing memory reads/writes from each operator in batches instead of
single operations. The batch size of 16 is small enough to en-
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sure good throughput without increasing memory access latency
too much.

5. REGEX ENGINE ON THE FPGA
The execution of a HUDF corresponds to accessing one of the

engines on the FPGA. Internally each engine consists of multiple
Processing Units (PUs). Each PU is a non-deterministic finite state
automaton (NFA) that matches a single regular expression to a se-
ries of bytes that constitute the input string. We use multiple PUs to
parallelize on the input tuples. That is, each engine checks multiple
tuples in parallel against the regular expression. The design of PUs
builds on the state-of-the-art in FPGA regular expression match-
ing [43, 37, 13] by adapting ideas to the needs of a database. Our
design has three main properties that make it well suited for use in
databases: I) it is parameterizable at runtime therefore it can evalu-
ate any regular expression appearing in queries without reprogram-
ming the FPGA, II) it consumes the input at constant rate regard-
less of pattern complexity or length which makes its cost function
very simple, an important aspect for query planning, and III) has
an architecture optimized to text queries that uses logic resources
efficiently to match longer words inside regular expressions. As
described in Section 8, there is a rich body of FPGA-based related
work, but none of those fulfill all three goals above.

5.1 Assembling PUs into an Engine
In Figure 4 we show the internal structure of an engine. The

first module in this pipeline is the String Reader which fetches the
strings from memory. The String Reader receives two pointers as
parameters, one pointing to a column of offsets, and the other point-
ing to the string heap (step 7, Figure 3). The offsets in the column
point to the corresponding strings in the heap. During operation the
String Reader alternates between two steps. In the first step it reads
512 cache lines (the depth of a BRAM FIFO on the FPGA) contain-
ing offsets from the offset column. Then in the second step it uses
these offsets to fetch the strings from the string heap. The strings
are parsed, aligned to the internal 512 bit data bus and forwarded
in round-robin fashion to the cache-line wide Input FIFOs. At the
end of the pipeline, the Output Collector collects the 16 bit match
indexes from the Result FIFOs in round-robin fashion to guaran-
tee that the results are in the same order as the input. Specifically,
it collects 32 results and writes them into a cache line of 512 bit.
These cache lines can then be written sequentially to the result col-
umn. The pointer to the result column is also provided as a runtime
parameter.

The String Reader and Output Collector can operate at the rate of
the QPI link, which in this system is bound at 6.4-6.5 GB/s. Since

each PU is implementing an NFA, a single PU only consumes one
input character (one byte) per cycle. Although it is possible to im-
plement multi-character NFAs [43] which consume more than one
character per cycle, their design is more complex and is not suitable
for our flexible State Graph approach (explained in Section 6.2). In
our default configuration, PUs are clocked at 400 MHz while the
rest of the circuit runs at 200 MHz, therefore a single PU can pro-
cess strings at 400 MB/s. Grouping 16 PUs together in a Regex
Engine leads to a combined bandwidth of 6.4 GB/s which matches
the bandwidth of the QPI and the String Reader. Using more PUs
in an Engine would mean that they are starving on the input for
more strings from the String Reader, while using less would mean
that they could not keep up with the String Reader leading to back-
pressure and stalling in the pipeline. All PUs within an engine are
connected to the same String Reader and Output collector, there-
fore they are all processing the same query and evaluating the same
regular expression. PUs cannot dynamically be reassigned to a dif-
ferent String Reader or engine at runtime.

6. PROCESSING UNIT (PU)
Regular expressions are most efficiently expressed as state ma-

chines, in particular non-deterministic finite state automaton (NFAs)
[9]. In contrast to deterministic finite state automatons (DFAs),
NFAs allow multiple states to be active at the same time, matching
well the parallelism of hardware circuits.

S0 S1 S2

a
b

c

*

(a|b).*c

Figure 5: Translation from regular expression to NFA

Figure 5 shows a simple regular expression, (a|b).*c, trans-
lated to an NFA. Even this simple example shows non-determinism
in that at the same time both state S0 and S1 might be active.
In contrast, DFAs have additional states to avoid nondeterminism,
which leads to the state explosion problem [41]. In software NFAs
cannot be evaluated efficiently, since for each new input every ac-
tive state has to be updated. Therefore the software implementation
has to iterate over all states or keep track of all active states. On the
other hand, hardware can efficiently implement an NFA since it
can update all active states in parallel and take state transitions if
necessary, all within a single clock cycle.

6.1 Parametrization
The main challenge in using FPGAs for regular expression match-

ing in databases is that the cost of recompiling circuits and de-
ploying them on the FPGA is prohibitively high. Therefore we
designed the Processing Units (PUs) as generic NFAs which are
parametrized at runtime to implement a specific regular expression.
Figure 6 depicts the architecture of a single PU (for simplicity, it is
scaled down to 4 characters and 4 states), it consists of Character
Matchers and a generic State Graph. These are parametrized by the
three registers: Tokens, Triggers, and State Transitions. The num-
ber of characters and states is fixed for a given deployment. This
two parameters limit the space of regular expressions that can be
mapped to a specific deployment, either by the length of an expres-
sion or its complexity.

Figure 6 also includes an example configuration vector encod-
ing our example expression (a|b).*c. The configuration vec-
tor contains the characters, the bits representing the Triggers and
State Transitions. Apart from that, it also contains flags which in-



T1 T2 T3 T4

’a’ ’b’ ’c’

T1 T2 T3 T4

S1 1 1 0 0

S2 0 0 0 0

S3 0 0 1 0

S4 0 0 0 0

S1 S2 S3 S4

S1 1 0 0 0

S2 0 0 0 0

S3 0 0 0 0

S4 1 0 0 0
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Tokens Triggers
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’a’ ’b’ ’c’

T1 T2 T3

1 1

1

1

1

0x61 0x62 0x63 0x00 0xC0 0x32 0x80 0x08 . . .

Configuration vector
Parametrization

Figure 6: Internal structure of a PU with resources for matching
4 characters and four states. The configuration vector at the top
parametrizes the registers (Tokens, Triggers, and State Transitions)
on the right, implementing the regular expression (a|b).*c.

dicate if two Character Matchers are coupled together to evaluate
a range instead of two separate characters. There are three param-
eter registers: Tokens, Triggers, and State Transitions. They are
parametrized through the above mentioned configuration vector,
and as a result the deployed PU implements the regular expres-
sion (a|b).*c. The Tokens parameter register defines the char-
acters to be matched in the Character matchers, the Trigger defines
which token triggers which state, and the State Transition register
defines which state triggers which state. Being able to parametrize
at runtime Tokens, Triggers, and State Transitions results in high
flexibility when mapping regular expressions to the hardware.

The way we decouple the transition conditions from the NFA
structure is inspired by previous work [37] on accelerating XPath
queries for traversing XML document which already decoupled
matching sequences of characters as logical tokens. Given the na-
ture of XPath queries, the resulting NFAs have a much simpler
one-dimensional structure (similar to a pipeline). As a result these
NFAs cannot support certain regular expression operations, for in-
stance alternations (a|b), as used inQ2 andQ3 of our evaluation,
are not supported. Furthermore it is not clear if their tokenizer can
support the evaluation of ranges ([0-9]). In contrast to this fixed
application-specific structure, our approach provides more flexibil-
ity through the flexible State Graph which can be modified at run-
time.

6.2 Flexible State Graph
The main goal of our PU implementation is to deliver the same

throughput as a hardcoded NFA while being able to evaluate any
regular expression that fits into the deployed circuit (number of
characters and states). To achieve these two seemingly conflicting
goals, we deploy a structure similar to a fully connected directed
graph on the FPGA, where each state is a node in the graph and
the edges which represent state transitions can be enabled or dis-

abled at runtime through the State Transitions register. The choice
of which token triggers which state can be imagined as a bipar-
tite graph, configured through the Triggers register. The circuit is
implemented as synchronous logic. This means that all states will
evaluate their inputs in parallel, make a decision, and then update
their outputs all at once, based on a common clock. The same holds
for the Character Matchers which update their outputs in sync with
the same clock signal. Figure 6 shows how the State Transitions
register is configured for our example expression (a|b).*c. The
start states are implicitly defined by not having any activating edge,
the end state is explicitly defined as the state with the highest index.
Once it becomes active, a signal indicating a match is activated, this
signal also contains the match index as a 16 bit unsigned integer.

6.3 Matching Sequences of Characters
To achieve flexibility we implemented the State Graph as a fully

connected graph. This however puts some constraints on the hard-
ware since each node needs to able to propagate their signal to all
other nodes within a single clock cycle. Furthemore, the larger
the State Graph grows the more space the circuit will take up on
the chip, increasing quadratically. To reduce the required size of
the State Graph, we match on sequences of characters in the regu-
lar expression instead of individual characters. This optimization is
chosen because we expect natural language-related data and queries
in the workloads. Extracting these sequences allows us to build a
compacted NFA on so called tokens instead of individual charac-
ters. Inside a PU is a series of Character Matchers, as shown in
Figure 6, that can be chained together to match a sequence of char-
acters. We illustrate this optimization on the following expression:
(Blue|Gray).*skies contains three tokens and the resulting
expression would be: (α|β).*γ. The trigger associated with to-
ken α is raised if the character sequence “Blue” has been detected.
Assuming that the letter “B” was mapped to the first character box,
then the trigger for α would be the output of the fourth character
matcher (T4 in Figure 6). Apart from chaining Character Match-
ers together they can also be paired up to match a range defined
by an upper and lower bound. The configuration of the Character
Matchers is encoded with flags in the configuration vector.

6.4 Complex Expressions
In general, more complex regular expressions translate to NFAs

with more states, and longer expressions require more character
matchers. For instance, the expression (Blue|Gray).*skies
translates to 3 NFA states and 11 characters. even though our reg-
ular expression matchers are runtime parameterizable, the number
of supported states and characters is decided at deployment time
(more details in Section 7.9). As a result, it is possible that a reg-
ular expression either requires more states or characters than avail-
able and therefore cannot entirely be mapped onto the engine. To
resolve this issue and still benefit from hardware acceleration, we
introduce hybrid execution, a technique which combines hardware
and software execution to evaluate the regular expression. Hybrid
execution is explained and evaluated in Section 7.8.

The regular expression matcher has been designed with a UTF-8
character set in mind and in our integration efforts we targeted the
English character set. The circuits support case-insensitive colla-
tions or user-specified collations for matching strings that include
characters with accents, etc. This is done by having multiple reg-
isters inside the character matchers that are compared in parallel to
the input. These extra comparisons have no effect on performance
due to the inherent parallelism of the circuit, but require additional
resources even if not all queries use the collation functionality. The
scalability of this circuit, and the cost of character matchers is dis-



cussed in detail in Section 7.9. Note that none of the existing work
on regular expression matching on FPGAs considers the problem
of collation.

7. EVALUATION

7.1 Experimental Setup
Our regular expression HUDF was deployed on the Intel system

described in Section 2.2. Except for the PUs which are clocked
at 400 MHz, our implementation runs at a frequency of 200 MHz,
which is the clock frequency of the QPI interconnect logic on the
FPGA. In our evaluation setup we deployed four Regex Engines on
the FPGA, each provisioned to support a bandwidth of 6.4 GB/s.
We use two different versions of MonetDB:I) an unmodified ver-
sion 11.21.19, compiled with the default configuration for bench-
marking, and II) a modified version that includes all adaptations
required to integrate our UDF, built on top of 11.21.19.

BATs are allocated in the shared CPU-FPGA memory region.
On the modified MonetDB version the sql_optimizer param-
eter is set to sequential_pipe, disabling intra-operator and
dataflow parallelism, since they introduce an overhead when used
together with our HUDF. The unmodified version uses the default
parameter for the sql_optimizer, enabling multi-threading even
for a single query. Apart from comparing to the unmodified version
of MonetDB, we also compare to a commercial row store database
(DBx). All experiments were executed on the Intel Xeon+FPGA
prototype machine. Unless otherwise stated, each experiment was
repeated 10 times and the reported number is the average of all
runs. We found the standard deviation between repetitions to be
very small, and consistent over all experiments.

7.1.1 Queries and Data

Q1 : SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE a d d r e s s _ s t r i n g LIKE ’%S t r a s s e%’ ;

Q2 : SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE REGEXP_LIKE ( a d d r e s s _ s t r i n g ,

’ ( S t r a s s e | S t r \ . ) .∗ (8 [0 −9]{4}) ’ ;

Q3 : SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE REGEXP_LIKE ( a d d r e s s _ s t r i n g ,

’ [0−9]+(USD | EUR | GBP) ’ ) ;

Q4 : SELECT count (∗ ) FROM a d d r e s s _ t a b l e
WHERE REGEXP_LIKE ( a d d r e s s _ s t r i n g ,

’ [A−Za−z ] { 3 } \ : [ 0 −9 ] { 4 } ’ ) ;

Figure 7: Queries executed on address data

For our evaluation, we use four different string queries, see Fig-
ure 7, to capture the different complexity levels one might encounter
in real workloads. Q1 is a simple substring matching operation
which can be expressed with the database operator LIKE, while
Q2 −Q4 represent a regular expression matching operation which
requires the database operator REGEXP_LIKE. For the FPGA im-
plementation all queries are mapped to regular expressions and ex-
ecuted as such on the hardware.

Well established benchmarks, such as TPC-H and TPC-DS use
only very simple string queries but they inspired our data set of
shipment address strings. Each string contains a name, street, num-
ber, city, and area code. These parts are concatenated into a single
string, as in the following example:

John|Smith|44 Koblenzer Strasse|60327|Frankfurt
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Figure 8: Throughput scaling with increasing number of Regex En-
gines

The strings are stored in a two column table where the first col-
umn is an INT ID and the second column of type VARCHAR stores
the address string. If not otherwise stated, the length of the strings
in our evaluation is 64 B. To have a well defined selectivity when
running those queries, hits are inserted uniformly at random into
the string data according to a predefined probability. The default
selectivity in the following experiments is set to 0.2 unless other-
wise stated.

7.2 Microbenchmark: Database operators
Table 1, presented in Section 1, shows the response times of ex-

ecuting a multi-substring pattern, using three different operators.
As shown, the performance degrades quickly from CONTAINS to
REGEXP_LIKE. The CONTAINS operator uses an inverted index
which has to be pre-built ahead of query time and kept up-to-date
by rebuilding it periodically (which takes more than 20 minutes for
2.5 Mio. tuples in DBx). Indexes can always be used to sped up
a query if the queries are known beforehand. However with our
work we want to support ad-hoc queries, which cannot make use
of an index, therefore we assume that LIKE and REGEXP_LIKE
operators work on un-indexed text data by scanning through the ta-
ble. REGEXP_LIKE could be used for all four queries. However
LIKE, which can be used for substring queries, performs signifi-
cantly better. Therefore for Q1 we use the LIKE operator, and for
the remaining queries REGEXP_LIKE.

7.3 Microbenchmark: Regex Engine scaling
As discussed in section 5, a Regex Engine containing 16 Process-

ing Units can process strings at a rate of 6.4 GB/s. However, the
FPGA has to access the main memory which is located on the CPU
socket over QPI. As a result the QPI bandwidth becomes a limiting
factor, in a read-heavy microbenchmark we measured a read band-
width of up to 6.5 GB/s over the QPI link. This means that a single
Regex Engine can almost saturate it. This experiment should ver-
ify this assumption and show that using multiple engines in parallel
has no negative impact on the aggregated throughput. In this exper-
iment we use 10 clients to generate load by running Q1 on a table
containing 2.5 Mio tuples and measured the aggregated throughput
(Figure 8). We can see that a single engine achieves 30.7 Queries/s
which translates to around 4.7 GB/s of useful throughput, not in-
cluding the 32 bit offset per string, meta-data, and padding in the
heap. Accounting for these leads to around 5.89 GB/s read band-
width. By adding a second engine the throughput increases slightly
to 34.4 Queries/s, this result indicates that some memory latency
can be hidden by using more than one Regex Engine. Although the
String Reader is carefully designed to issue memory requests every
cycle, there is some memory latency when switching form reading
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Figure 9: Response time depending on input size and complexity
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Figure 10: Breakdown of the response time, as spent in different
parts of the system for a small relation with 10 k tuples.

offsets to reading the string heap (and back) which cannot be com-
pletely hidden. Adding more than two engines does not improve
the aggregated throughput further, the system is already bound by
the QPI bandwidth.

7.4 Microbenchmark: Response Time Break-
down

To determine the overhead of offloading a regular expression
query to the FPGA we broke down the response time into different
execution times occurring throughout the system. Figure 10 shows
this breakdown for all four queries and illustrates the time spent
in the database (everything but the UDF), in the UDF, to generate
the Regex Engine configuration vector, create a job in the HAL,
and finally the actual execution in the Regex Engine on the hard-
ware. For this experiment we deliberately choose a table with only
10,000 entries such that the hardware execution time is not dom-
inating the overall execution time. The time required to generate
the configuration vector is less than 1µs and therefore not visible
in the plot. Before the Regex Engine is started, the HAL hardware
module loads the job parameters from memory and parametrizes
the Regex Engine including the PUs which takes around 300 ns.

7.5 Response Time depending on Complexity
This experiment evaluates the impact of pattern complexity on

the response time, while increasing the number of records in the
input table from 320,000 to 10 Mio.. In Figure 9a, we compare the

response time of MonetDB with the FPGA. Q1 which has the low-
est complexity and uses the LIKE operator performs well, slightly
better than our UDF. However, the more complex queries Q2-Q4

have about an order of magnitude higher response time. On the
FPGA, the performance is complexity independent and therefore
the four lines plotted for Q1-Q4 are on top of each other. This
graph also shows how MonetDB uses intra-operator parallelism by
partitioning the data horizontally into 10 partitions, the number of
CPU cores available. As a result, it achieves a constant response
time up to 2.5 Mio. records, only for larger tables the response time
increases linearly with the size. Although the FPGA parallelizes
by horizontally partitioning the data to the four Regex Engines, it
shows a linear behavior for any size of input. The parallelization
and synchronization overhead for the FPGA is negligible, however
it seems that for small input sizes the overhead of parallelization
and synchronization in MonetDB leads to a constant response time.
In Figure 9b the same comparison is done against DBx, the FPGA
numbers are the same as in the previous graph. Similarly to Mon-
etDB, the response time for the simple query Q1 is more than an
order of magnitude lower than for the complex queries. Unlike
MonetDB, DBx uses strictly one thread per query which means
this experiment is single-threaded. As a consequence the response
time scales linearly with the input size.

In both of these experiments the hardware UDF is clearly bound
by the QPI bandwidth, the possible response time of the FPGA
without bandwidth limitation is indicated by the dashed line in the
graphs. In which case our UDF would be competitive even for the
low complexity query.

7.6 Throughput
In the previous experiment, only a single client was sending re-

quests to the database. As a result DBx was not able to take ad-
vantage of all available CPU cores. In this experiment we keep
the input size fixed to 2.5 Mio. records and increase the number of
clients sending requests. We report the throughput and compare in
Figure 11a with MonetDB and in Figure 11b with DBx. Again, we
see that MonetDB performs better than the FPGA for the simple
query Q1. For the complex queries MonetDB performs about 5-
15x slower than Q1 or the FPGA. The FPGA can deliver constant
throughput independent of the number of clients.

While MonetDB with its multiple levels of parallelism delivers
almost constant throughput independent of the number of clients,
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DBx which strictly assigns one thread per query shows a linear
increase with the number of clients. For the simple query Q1 it can
match the throughput of the FPGA when serving 10 clients.

7.7 Complex Query
This experiment illustrates how our regular expression operator

can be seamlessly integrated into any type of query over string data.
Only a few queries in the TPC-H benchmark suite are using the
LIKE clause. For this experiment we choose the TPC-H Query 13.
Due to the limited memory space the scaling factor to generate the
data was set to 0.1.

TPC−H Q13 :
SELECT c_count , COUNT(∗ ) AS c u s t d i s t
FROM (

SELECT c _ c u s t k e y , count ( o _ o r d e r k e y )
FROM c u s t o m e r
LEFT OUTER JOIN o r d e r s ON

c _ c u s t k e y = o _ c u s t k e y
AND o_comment not l i k e ’%s p e c i a l%r e q u e s t s%’

GROUP BY c _ c u s t k e y
) AS c _ o r d e r s ( c _ c u s t k e y , c _ c o u n t )

GROUP BY c _ c o u n t
ORDER BY c u s t d i s t desc , c _ c o u n t desc ;

Apart from executing the query in the original version with the
LIKE clause, we also modified it to use the ILIKE clause which
enables case-insensitivity. As can be seen in Figure 12, using the
case-insensitive version slows down the query execution in Mon-
etDB by a factor of 2. On the other hand the regular expression
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Figure 13: Hybrid execution of query QH

operator on the FPGA is about 30% quicker than the LIKE, and it
can provide case-insensitivity without any overhead.

7.8 Hybrid Execution
As explained in Section 6.4 there are two limitations on the reg-

ular expressions that can be mapped onto our regex engines: the
maximum number of the characters in the expression and the num-
ber of states required to model the NFA. While the expressions we
use in the evaluation fit on the device, for cases when they do not,
the idea is to split regular expressions into two pieces at a suitable
point, e.g., at the occurrence of a wildcard ’.*’. If one of these
pieces fits into the regular expression matcher on the FPGA, we
can pre-process all tuples on the hardware, and post-process the
ones that matched (the remainder of the expression) on the CPU.
This idea resembles recent work on GPUs by Pirk et al. [27] in
which the authors perform hybrid computation between GPU and
CPU, by partitioning data between the two bitwise. That is, the
GPU holds the most significant bits of the dataset and perform for
instance a pre-selection, after which the CPU does a pass over the
remaining data.

To determine the performance of this hybrid execution, we con-
structed a new query which extends the regular expression fromQ2

with an additional substring:

QH:
SELECT count (∗ ) FROM a d d r e s s _ t a b l e s
WHERE REGEXP_LIKE ( a d d r e s s _ s t r i n g ,
’ ( S t r a s s e | S t r \ . ) .∗ (8 [0 −9]{4}) .∗ d e l i v e r y ’ ;
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This regular expression can easily be split into two parts at the
wildcard. The first part is evaluated on the FPGA and the substring
search for ’delivery’ is executed in software. We created the dataset
such that all strings matching the first part will contain the last part
as well. This means that the selectivity of the pattern corresponds to
the percentage of strings that would need post-processing in a hy-
brid setup. This query was executed on a table containing 2.5 Mio
tuples. Figure 13 shows the throughput of this approach. The post-
processing for the hybrid version occurs on the software-side of our
regular expression UDF. In comparison to MonetDB, the hybrid ex-
ecution achieves a speedup of up to 13x. This shows that even if
a regular expression cannot be entirely evaluated by the FPGA, it
might still be beneficial to run part of the expression on it. The
deterministic performance of the hardware also helps in deciding
when and how to use hybrid execution.

7.9 Resources
On FPGAs every functionality takes up real estate and therefore

one of the key metrics is the total hardware resource usage of the
implemented circuit. For simplicity, we will group resources into
two categories: Logic and BRAM. The former stands for resources
used to implement behavior while the latter is used for storage,
configuration and FIFO buffers.

Although a single Regex Engine is designed to saturate the QPI
bandwidth, it is possible to deploy up to four of them on the FPGA,
as shown in Figure 14a. Thereby we make use of the available
resources and enable concurrent execution of up to four queries on
the FPGA. The Figure shows that even five engines can fit onto the
FPGA, however the routing tools cannot find a valid routing which
meets the timing requirements of the circuit.

Our default configuration assembles 16 PUs into a single Regex
Engine leading to 6.4 GB/s bandwidth per Engine, matching the
available memory bandwidth. However, there are two possible
alternatives to our default configuration of 4x16, with different
trade-offs regarding concurrency, throughput, and resource usage:
two engines with 32 PUs each and one engine with 64 PUs. In the
latter one the PUs would starve on the input side, since the String
Reader at best can produce one cache line per cycle at 200 MHz
leading to 12.8 GB/s. For the former alternative the current String
Reader would be sufficient, though the available memory band-
width means that also in this configuration PUs are starving on the
input side. Deploying less than 16 PUs would mean the String
Reader produces more strings than can be processed leading to
stalling in the processing pipeline.
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Figure 15: Trade-off between regular expression complexity and
throughput. For the points outside the marked area the tools were
reporting timing violations.

A large part, 28%, of the resources is consumed by the QPI end-
point which is implemented in FPGA logic. This overhead is con-
stant for any of the above mentioned PU/Engine configurations.
The control logic for data arbitration and the String Reader logic
scales with the number of engines, while the logic consumed for
the Regex Engine is related to the number of PUs it contains. Our
default configuration can process data at a rate of 25.6 GB/s about
four times the available bandwidth of QPI, while using 80% of the
available logic resources. In the future, the following factors could
increase the number of engines that can be deployed or, alterna-
tively, increase the maximum clock frequency at which they can be
operated: more resources on the FPGA, improved routing in next
generation chips [12], or hardening of the QPI endpoint including
its cache.

To determine the scalability of the PUs, we first evaluate the re-
source requirements when either increasing the number of charac-
ters or the number of states. In Figure 14b we show that, as ex-
pected, increasing the maximum number of characters has a linear
effect on resource usage and that even with a high character count
the circuit fits on the FPGA. Not shown in the figure are the BRAM
consumption numbers, because they are constant at 42%. Also, it
is clear that the QPI endpoint itself occupies a significant portion
of the chip, 28% of logic and 4% of BRAM resources. The effect
of increasing the state count is more accentuated (Figure 14c), be-
cause the logic resources grow quadratically with the size of the
fully connected graph. With up to 16 states in the regular expres-
sion a significant portion of the chip is used by the State Graph.



In addition to the configurations discussed above, we explore
how much additional complexity (states and characters) could be
implemented on the FPGA if the PUs would be clocked at a lower
frequency. Reducing the frequency reduces the throughput as well,
but allows for longer signal delays between different parts in the
PU. This means the State Graph can be larger and still meet the tim-
ing constraints. For this evaluation the 2x16 setup is used to make
sure that enough resources on the chip are available to increase the
complexity. Figure 15 shows the space (number of states and char-
acters) of valid PU configurations for the two target frequencies.
By halving the clock frequency, the space of possible configura-
tions is significantly increased. Although the clock frequency is
reduced, the circuit can still deliver enough bandwidth to saturate
the current QPI bandwidth. Note that these results can change even
for minor changes on the circuit design. Furthermore the tools are
non-deterministic, this means there is a small variation between
different synthesis runs. Nevertheless this evaluation illustrates the
trade-off between clock frequency/throughput and complexity.

8. RELATED WORK
There are several types of string-based queries in databases: string

matching, regular expression matching, approximate string match-
ing, and document search. The work presented in this paper ad-
dresses the first two, focusing mostly on regular expressions. Due
to their high computational overhead, regular expressions are not
used very often in databases. Reducing their cost could enable
more complex queries and varied workloads. Aside from relational
databases, regular expression matching is used in many applica-
tions, such as network intrusion detection (NID) [20, 8], compilers,
and DNA sequencing [19]. Standard libraries of most programming
languages include regular expression matching functionality.

8.1 String Matching
String matching is widely adopted in databases through the stan-

dardized SQL LIKE clause. It can be used to match multiple sub-
strings divided by the wildcard character ’%’. Different type of
indexes are used to improve string search, such as suffix, n-gram
or inverted index. Generally this indexes have a large memory
footprint exceeding the size of the indexed data. Oracle and DB2
support regular expressions through REGEXP_LIKE and full-text
search through CONTAINS. Even though they both use a special
index for the latter, the exact semantics of the operator are vendor
specific. Microsoft SQL Server extends the LIKE operator with
ranges, e.g., [a-d] can match a, b, c or d.

For software there are two efficient algorithms Knuth-Morris-
Pratt (KMP) [17] and Boyer-Moore (BM) [2], the latter one per-
forms generally better because it can skip over larger parts of the
input string than KMP and therefore is often used as a benchmark in
string matching literature. Although simple string matching can be
executed efficiently on CPUs, as both DBx and MonetDB demon-
strated in the Evaluation section, there is work showing how GPUs
can be used to further accelerate this task. Sitaridi and Ross [34]
use GPUs to accelerate substring search in strings, however their
work assumes that the data is already in the GPU’s memory and
has a very specific layout which suits the GPU’s execution pat-
tern. When running on string data that has not been organized
specially for the GPU the performance drops from 60-70 GB/s to
around 20 GB/s, comparable to CPU-based execution. Addition-
ally, the more wildcards the expression has, the slower the matching
becomes. In contrast, our specialized hardware solution provides
complexity-independent performance on unmodified data.

8.2 Regular Expressions
Evaluating regular expressions is costly in software, as the ex-

ecution easily becomes compute bound. The regular expressions
are most often mapped to deterministic finite automaton (DFA) be-
cause these only have one possible transition per parsed character,
leading to more predictable performance. On the other hand, DFAs
suffer from state explosion (illustrated for instance in [41]). Some
databases provide native functions for regular expressions and in
other systems this functionality can be added through User Defined
Functions (UDF).

Hung et al. [18] use GPUs to accelerate regular expression match-
ing. Their approach uses DFAs enhanced with techniques to reduce
the effect of state explosion, and report on-device throughput num-
bers of 10-15 GB/s depending on the pattern complexity. Once the
data movement over PCIe is also taken into account the throughput
drops roughly by a factor of 10, putting it in the range of software-
based regular expression implementation. Unlike with PCI-based
accelerators, the communication overhead in our shared memory
CPU-FPGA system is negligible.

In their recent work, Sitaridi et al. [33] show how careful op-
timization of DFAs to a SIMD execution model results in faster
regular expression processing. Additionally, they propose an early-
exit mechanism that helps in cases where the regular expression
has to match the entire input string (e.g., e-mail address checking).
However, the software trade-offs mentioned before still hold: both
on regular CPUs and many-cores (such as the XeonPhi used in their
paper) performance drops with increased query complexity (size of
the DFA). Furthermore, if the execution cannot take advantage of
the early exit technique, it must process all bytes of the input result-
ing in a throughput of around 6 GB/s on a 4 core CPU. In a work-
load most similar to our evaluation the Xeon Phi achieves around
30-40 GB/s of throughput, benefiting from the high memory band-
width of the on-chip GDDR5 RAM. In contrast to our work, they
do not discuss how the XeonPhi co-processor could be integrated
into an application, such as a database engine, and whether this
would impact performance.

There has also been progress in novel algorithms for parallel reg-
ular expression matching, described in [38]: vector instructions are
used to pre-compute state changes, by enumerating possible state
transitions. Although, this approach increases the overall com-
putation per expression, this can be compensated by the use of
multi-threading and SIMD parallelism leading overall to a speedup.
While promising, this work shows most improvement when us-
ing relatively simple expressions, and reaches a throughput of 5-
5.5 GB/s. In the database scenario generally multiple queries have
to be served, therefore it is more beneficial to use the multi-threaded
parallelism to execute multiple queries in parallel than speedup the
regular expression evaluation of a single query by pre-computing a
large number of potential transitions.

8.3 FPGA State-of-the-art
Regular expressions are very common in network intrusion de-

tection systems. Those systems have to match each network packet
against multiple rules (e.g. Snort [30], Bro [26]) to determine if the
packet is malicious. Work in this area [4, 20, 32, 41] focuses on
fusing many different regular expressions, all known beforehand,
in a way that they can all be matched against the same input. In
our work we focus on answering a single regular expression, not
known beforehand, aiming at much higher data rates than what are
common in networking related work (6-25 GB/s vs. 1-10 Gbps).

Many FPGA related work focuses on packing the regular expres-
sions as tightly as possible, that is, to use as little resources as pos-
sible, e.g. [43], and also exploring ways of increasing performance



by consuming more than one input character per clock cycle. The
work of Teubner et al. [37] explores ways of compactly packing
a matching circuit on the FPGA for answering XPath queries on
XML data. To increase logic sharing they use a re-programmable
tokenizer component. Due to the way XPath queries are structured,
their work requires the ability to change the textual content of a
query but not its structure. As a result the structure of the NFA
in hardware is fixed in a pipeline shape. In contrast, we provide a
flexible and compact representation for the NFA that enables more
parallelism. Other works [15, 13] look at making the structure of
the finite state automaton more flexible, so that it can be modified
at runtime. While showing promising results, these efforts studied
the problem without integration in a larger system. In this work
we combined ideas from the state-of-the-art, while focusing on the
needs of the database. We provide a simple API to access the regu-
lar expression engines on the FPGA and wrap them in UDFs, which
provides the best of both worlds: the flexibility of software and
state-of-the-art regular expression matching performance.

8.4 SQL Operators on FPGAs
There is an extensive body of work on implementing SQL opera-

tors in reconfigurable fabric, ranging from predicate evaluation [31,
23], through join [11] and aggregation with group-by [5] to his-
togram building [14].

In accelerator based approaches, the specialized hardware (GPU,
many core devices, FPGAs, etc.) is either connected through the
PCI bus (e.g., [16, 34, 29]) or placed on the data path, for instance
the network card [10] or between disk and CPU [40, 6]). In the lat-
ter approach the accelerator is not incurring additional data move-
ment, since the data has to be moved from the storage/network to
the CPU either way. Ibex [40] an intelligent storage engine for SQL
off-loading adopted this method to avoid data movement. Ibex can
offload selection, projection and group-by aggregation to the FPGA
which is placed at the storage device. One challenge of placing the
FPGA in the data path is the limited amount of state that can be
kept in the device. Therefore many approaches [41, 21, 22] focus
on stream processing where only a limited window of the stream
has to be considered. A runtime configurable approach was intro-
duced by Najafi et al. [22] which use Online Programmable Blocks.
These blocks can be configured for different SQL operations for
each new query without reconfiguration of the FPGA.

9. DISCUSSION
In this work we showed how emerging hybrid multicore archi-

tectures can enable seamless integration of hardware accelerators
into database engines. Having consistent data access from the ac-
celerator is crucial in the database domain to avoid partitioning,
reformatting, or additional movement of data. Although the exper-
imental platform under evaluation has certain limitations such as
limited memory bandwidth, limited memory capacity, and lack of
low-latency interrupts/communication between FPGA and CPU, it
still provides a good indication of the next generation systems and
how they can be used to the benefit of existing database engines.
In fact, Intel already released some details [28] about the next gen-
eration Xeon+FPGA architecture which will address the issues of
memory bandwidth by providing both a QPI and PCIe link to the
FPGA.

In future systems we also expect improved (virtual) memory
management mechanisms and that the FPGA can access the full
address space of the machine. Both of these functionalities are
already available on IBM’s CAPI platform where the FPGA can
send pagefault interrupts to the operating system. Combined with
recent industry initiatives such as OpenCAPI and CCIX we expect

to see more architectures where accelerators have direct and cache-
coherent access to shared memory.

For a seamless integration of our hardware operator we used the
UDF interface common in many databases. However, it has a few
limitations: 1) from the perspective of the database the UDF acts
like a blackbox which limits the ability of the query optimizer to
take the right decisions, 2) the query optimizer has no knowledge
about the capacity or current load on the FPGA especially when
many concurrent queries are executed, 3) the UDF cannot provide
a cost model to the database. Based on this, it is nearly impos-
sible for the query optimizer to predict the execution time of the
FPGA-based UDF. Additionally, in most databases the UDF inter-
face only allows processing of a single tuple at a time leading to a
high invocation overhead and reduced performance. MonetDB as
an exception provides a BAT-based interface. This drastically re-
duces the overhead of calling the UDF, which otherwise could void
the benefit of specialized hardware.

Given the current trend towards customized hardware we expect
that databases will have to adapt to take full advantage of such
accelerators. Either by enhancing the UDF interface to address
the aforementioned shortcomings or through new execution mod-
els for database engines which provide native support for accel-
erators. This way many compute-intensive operators could benefit
from hardware acceleration. Combined with partial reconfiguration
of the FPGA, the database engine could deploy multiple different
hardware operators at runtime according to characteristics of the
current workload. The query optimizer will then be able to dynam-
ically decide where an operator with both a hardware and software
implementation, such as our regular expression operator, will be
executed. This decision can be taken depending on the operator’s
cost model and current load in the system.

10. CONCLUSION
In this paper we looked at regular expression matching, a compute-

bound operation in database engines. We implemented an FPGA-
based runtime parameterizable regular expression operator using
state-of-the-art techniques. This operator was integrated into an
existing column store, MonetDB, as a hardware user defined func-
tion (HUDF) on a hybrid CPU-FPGA multicore machine. With the
introduction of more shared memory hybrid hardware platforms
we see more opportunities to use specialized hardware, such as
FPGAs, to accelerate compute-intense database operators and in-
tegrate them as UDFs into the database engine. Therefore we con-
sider the lessons learned in this work applicable for other compute-
intense operators.

Our regular expression HUDF not only shows significant accel-
eration of query execution both in comparison to MonetDB and a
commercial row store, but also provides predictable performance
independent of regular expression complexity. We further explored
the trade-offs of our hardware circuit regarding resource usage,
throughput, and supported regular expression complexity.

The source code of the hardware operator, the integration into
MonetDB, and all related software is released as open source2to
facilitate further exploration of these new architectures.
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