
A Flexible K-Means Operator for Hybrid Databases
Zhenhao He David Sidler Zsolt István Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zürich, Switzerland

zhe@student.ethz.ch david.sidler@inf.ethz.ch zsolt.istvan@inf.ethz.ch gustavo.alonso@inf.ethz.ch

Abstract—The K-means algorithm is widely used in unsuper-
vised learning and data exploration. It is less used in analytical
databases due to its high computational cost. K-means has been
explored in great detail, mostly focusing on performance. How-
ever, in emerging hybrid CPU-FPGA databases where memory
bandwidth is shared across software and hardware operators,
two additional requirements arise. One is parameterization to
avoid frequent reprogramming. The other is concurrent use
to balance memory bandwidth and computation. Our design
supports two operational modes that can be chosen at runtime,
one for high query throughput and one for evaluating multiple
clusters concurrently. The former targets speed up, while the
latter targets efficient bandwidth utilization by increasing the
amount of computation per input byte. Our design is competitive
when compared to both existing FPGA-based solutions as well
as highly optimized multi-core software implementations.

I. INTRODUCTION

K-means clustering is used as a building block for unsu-
pervised learning tasks spanning several application domains.
Due to its computational intensity it is a common target for
software and hardware optimizations [1]–[3]. In this work,
we extend the state of the art by providing flexible runtime
parametrization of the algorithm while maintaining a through-
put comparable to the fastest software and hardware solutions.

The need for exploring flexible circuits that can adapt
to different input parameters (number of dimensions and
centroids) arises from the adoption of hybrid CPU-FPGA
architectures where the overhead of offloading is lower than
in PCIe-attached setups, opening up opportunities for FPGA
acceleration while making reconfiguration less appealing. In
this paper we focus on extending databases [4] running atop
hybrid architectures with hardware-accelerated analytical op-
erators [5], [6] where workloads change often and comprise
many concurrent queries working on varying amounts of data,
motivating the need for parameterizable designs. Further, in
hybrid architectures, memory bandwidth is shared between op-
erators concurrently running on the CPU and FPGA. To ensure
that hardware operators do not prevent others from making
progress, their design should allow to adjust the required
memory bandwidth. Instead of slowing down processing when
memory bandwidth is scarce, the design should offer more
computation on the same data: one example is running the
clustering algorithm with different parameters concurrently.

Running the algorithm with different parameters addresses
a key challenge of clustering operators, namely determining
the “right” number of clusters. The most common method
to detect the value of k is called the “elbow method”. This
traditionally requires multiple runs over the same dataset using

a different numbers of clusters until adding another cluster
does not significantly decrease the squared sum of errors
within the clusters. On an FPGA, this computation can be
efficiently parallelized, resulting in predictable runtime.
The contributions of this paper are as follows:

• A runtime parameterizable design that can accommodate
different number of dimensions and centroids while of-
fering the same constant processing rate thanks to its
pipelined architecture.

• A complete FPGA implementation of the K-means algo-
rithm including assignment, update, and error calculation.

• Two operational modes: (1) throughput oriented using
the on-chip parallelism to accelerate iterations, and (2)
bandwidth-conserving to compute multiple centroid num-
bers in parallel, leading to a faster exploration of clusters.

II. K-MEANS ALGORITHM

K-means is an unsupervised clustering algorithm that groups
data points into a predefined number of clusters k. The algo-
rithm consists of three steps: (1) the initialization step, which
picks k random centroids, (2) the assignment step, where each
point is assigned to its closest centroid, and (3) the update
step, where the centroids are recalculated as the mean of the
points assigned to them. To determine the distance between
data points and centroids, we use the Euclidean distance. The
algorithm is either executed for a fixed number of iterations or
until the centroid assignments no longer change. The number
of centroids k is an input to the algorithm, however it is
difficult to choose the most suitable value of k without prior
information of the dataset. In order to find the optimal number
of clusters, the algorithm is run on a range of k values until
convergence. The sum squared error (SSE) as a function of k
is plotted and the “elbow point”, where the rate of decrease
sharply shifts, can be used as a guide to determine k.

III. DESIGN OVERVIEW

The K-means operator consists of three main parts: (1) the
Controller which requests data from the main memory and
writes back the results, (2) the Assignment pipeline which
calculates the distance between a data point and all the cen-
troids and assigns it to the closet centroid, and (3) the Update
module which updates the centroids in-between iterations. The
operator processes 32 bit fixed point values.

The parallel pipelines deployed on the FPGA can be utilized
in two different modes: High Bandwidth and Elbow, both uti-
lizing all deployed pipelines(Figure 1). In the High Bandwidth
mode, they can all be assigned and parametrized with the same



Fig. 1: The operator can be parametrized at runtime for
either high throughput meaning all pipelines execute the same
configuration or for parallel exploration where each pipeline
has possibly a different configuration.

number of clusters k providing the highest bandwidth for a
specific k and maximizing memory bandwidth usage. In the
Elbow mode, the user can partition and assign the pipelines to
concurrently run different numbers of k for faster exploration
of the space reducing the memory bandwidth usage.

In the former mode only one Update module is enabled
since all pipelines work together and their results have to be
aggregated after each iteration. In contrast, in the latter mode,
pipelines work independently in parallel, each assigned to a
different Update module. Apart from these two configurations,
pipelines can be tiled in any power-of-two configuration. For
instance, in our evaluation we use two pipelines per cluster
number, calculating 8 different configurations on 16 pipelines.

A. Controller

When the operator starts, the Controller reads the initial
centroids from the main memory. The input data is in a row
format meaning all dimensions of a data point are contiguous
in memory. After the distance processors in the Assignment
pipeline are initialized with these centroids, the Controller
starts fetching data points from memory and, depending on
the mode, either broadcasts or distributes them in round robin
fashion to the pipelines. After the algorithm is executed for the
intended amount of iterations, the Controller writes the final
centroids and the corresponding sum squared error (SSE) back
to the main memory where it can be read by the application.

B. Assignment Pipeline

The Assignment Pipeline consists of an array of distance
processors calculating the distances between each data point
and all centroids. As shown in Figure 2, the data points are
streamed through the array one dimension at a time. Each
processor calculates the Euclidean distance between its stored
centroid and the data points streaming through. This distance
is compared with the minimum distance calculated from the
previous processors and the minimum of these two values to-
gether with the corresponding cluster assignment is forwarded.
In this way, the minimum distance and the corresponding
cluster assignment can be obtained at the end of the array
when the last dimension of a data point is output. The output
of the distance processor array is fed into the Accumulator

Fig. 2: Architecture of the operator with multiple Assignment
pipelines and Update modules which can be dynamically
interconnected at runtime.

(Accu) module which accumulates the data points per cluster
and maintains counters of how many data points are assigned
to each cluster. After all data points are processed by the array,
the accumulator pushes its results to the Update module.

C. Update Module

The Update module contains an Aggregator and a Divider.
The Aggregator aggregates the data points, counts of assign-
ments, and the SSE from multiple pipelines. The aggregated
values are forwarded to the Divider which calculates the new
centroids. The Update module then pushes the new centroids
to the corresponding pipelines to update the centroids stored
in the distance processors. The connections between pipelines
and Update modules are configured at runtime and depend on
the operational mode (Figure 1). After the last iteration, the
final centroids and SSE are forwarded to the Controller which
writes them to the main memory.

D. Run-time parametrization

Both the number of dimensions per data point and the num-
ber of clusters can be parametrized at runtime. The distance
processors receive with each dimension a flag indicating if this
is the last dimension of the data point. This flag is set by the
Controller and therefore, the distance processors themselves
are oblivious to the number of dimensions. Our operator is
deployed with a fixed number of distance processors per
pipeline, however the number of clusters can be parametrized
at runtime to a lower number by disabling the unused distance
processors. A disabled processor passes data along but does
neither calculate the distance nor update the assignment.

E. Software Integration

For integration with the software we use the open-source
framework Centaur [7], which provides software abstractions
for the hardware operators and a thin hardware layer to facil-
itate concurrent and dynamic offloading of multiple operators
to the FPGA. When the software calls the hardware operator
through Centaur, it provides the memory pointers, runtime
parameters and the operational mode. When an operator ter-
minates, a done signal is send to Centaur which then notifies
the user application that the operator terminated.



4 8 16
0

1

2

3

Number of clusters

T
hr

ou
hg

pu
t

[G
B

/s
]

(a) FPGA using a single pipeline

4 8 16
0

1

2

3

Number of clusters

d=4 d=8 d=16 d=32 d=64

(b) CPU using a single thread

4 8 16
0

5

10

15

Number of clusters

(c) FPGA using 16 pipelines

4 8 16
0

5

10

15

Number of clusters

(d) CPU using 14 threads

Fig. 3: Throughput using synthetic data, with a varied number of clusters and dimensions.

IV. EVALUATION

A. Setup

The presented K-means operator is evaluated on the second
generation Intel Xeon+FPGA machine1equipped with a 14-
core Xeon Broadwell E5 clocked at 2.4 GHz, 64 GB main
memory, and an Arria 10 FPGA connected over 1 QPI and
2 PCIe links to the CPU’s memory controller resulting in up
to 17 GB/s read bandwidth. The operator is deployed with 16
pipelines running at 200 MHz supporting up to 16 clusters and
64 dimensions. For comparison we use a highly optimized
multi-core K-means software implementation [1] taking ad-
vantage of SIMD and MIMD parallelism and minimizing data
transfers between registers, cache, and main memory.

A real world Iris dataset2and a synthetic one are used. The
former consists of 150 data points describing 3 types of flowers
with 4 dimensions. We expanded it by adding uniform noise
within 10% of the original values. The latter one has up to 64
dimensions following Gaussian multi-variate distributions.

B. Flexibility

We evaluate flexibility on the synthetic dataset by varying
the number of dimensions and clusters. The performance of
the FPGA with one and 16 pipelines and the software with one
and 14 threads is measured. Figure 3 shows a stable throughput
independently of the choice of dimensions and clusters. In both
cases the throughput by the FPGA implementation is close
to its theoretical maximum of 0.8 GB/s for single pipeline
(32 bits per cycle at 200 MHz) and 12.8 GB/s for 16 pipelines.
While a software based solution can provide the same amount
of flexibility, its performance varies depending on the input
parameters and is less predicable. Figure 3b shows that the
throughput of a single thread decreases with increasing number
of clusters. However in the case of 14 threads, the software
implementation benefits from more clusters and dimensions,
since this allows better parallelization of the work among
multiple threads (Figure 3d). At the same time for a low
number of dimensions and clusters increasing the number of
threads only shows a marginal benefit.

1Results in this paper were generated using pre-production hardware and
software, and may not reflect the performance of production or future systems.

2https://www.kaggle.com/uciml/Iris/data

0 5 10 15 20 25
0
2
4
6
8
10
12
14
16

Mio. data points

T
hr

ou
gh

pu
t

[G
B

/s
]

T=14 T=8 T=4 T=2 T=1
P=16 P=8 P=4 P=2 P=1

Fig. 4: Throughput for the synthetic dataset with 64 di-
mensions and k set to 8 comparing CPU and FPGA while
increasing the number of pipelines (P) and threads (T).

C. Throughput

The throughput of our operator is evaluated in the High
bandwidth mode, meaning all active pipelines are configured
with the same centroids and number of clusters. As seen
in Figure 4, the throughput of the circuit increases linearly
with the number of parallel pipelines used. With 16 pipelines
our design reaches 11.4 GB/s close to the theoretical peak of
12.8 GB/s. As a comparison, we run the multi-core K-means
software implementation with increasing number of threads.
As can be seen from the previous experiment, the chosen
configuration(k = 8, d = 64) matches the software implementa-
tion. The FPGA peak performance is slightly higher than the 8-
threaded execution. By using 14 threads the CPU benefits from
the high parallelism and memory bandwidth and reaches up to
16.7 GB/s. From these results, we conclude that the FPGA can
match at least 10 cores in terms of absolute performance while
providing fully predictable response times for all parameter
ranges.

D. Exploration: Elbow mode

The Elbow mode allows for a faster exploration of the
optimum k while reducing the overall required memory band-
width. Figure 5 compares the concurrent evaluation of 8 clus-

https://www.kaggle.com/uciml/Iris/data


0 5 10 15 20 25

Execution time [s]

CPU-Seq-T1
CPU-Conq

FPGA

Fig. 5: Evaluation of multiple k, both sequentially and con-
currently on software and concurrently in hardware

Resources ALM BRAM DSP
Controller 779 0.18% 0 0% 1 0.06%
1x Assignment 8212 1.92% 35 1.29% 55 3.62%
1x Update 3768 0.88% 19 0.70 0 0%
Total for P=1 13242 3.10 % 54 1.99% 56 3.69%
Total for P=8 86614 20.27% 432 15.92% 441 29.05%
Total for P=16 171550 40.17% 856 31.55% 881 58.04%
Centaur 87047 20.38% 429 15.81% 0 0%

TABLE I: Resource consumption of full operator including
Centaur with single clustering module and 1, 8, 16 pipelines

ters using 2 pipelines each on the FPGA to a single threaded
execution of the software implementation which evaluates 8
different clusters sequentially. The concurrent evaluation of
multiple k’s shows a clear performance benefit. To take the
multi-core parallelism of the CPU into account, we also run
all 8 clusters concurrently on the CPU, each assigned to a
a different core (single-threaded). This reduces the execution
time over a single thread but remains inferior to the FPGA.

To verify correctness of the FPGA operator, we run the
elbow method on the expanded Iris dataset and compared it to
results from a software implementation using either fixed point
or floating point arithmetic. All three results are consistent and
lead to an optimal cluster number of 3 given the 3 flower types.

E. Resource Usage

Table I shows the resource usage for the major components.
Both the Assignment pipeline and the Update module have a
very low resource usage allowing the desing to scale out in
the number of pipelines and thereby increasing the bandwidth.
The resource usage from 1 to 16 pipelines increases linearly
using up to 40% logic resources. DSPs are mainly used for
the distance calculation in the Assignment pipeline.

V. RELATED WORK

There is a wide range of research on accelerating K-means
using FPGAs [8], [9]. There are mainly two architectures, one
based on a systolic-array of distance processors [10], [11] and
one in which all distances are calculated in parallel followed
by a reduction tree to find the minimum distance [12], [13]. We
opted for the former, since it allows for pipeline parallelism
and scales better to maximize bandwidth and DSP utilization.
In the latter one, resources for the tree increase with the num-
ber of distance processors limiting scalability. Most existing
work either processes floating or fixed point values. Estlick
et al. [12] showed that using fixed point instead of floating

point for the distance calculation has a negligible impact on
the final accuracy. Many existing work offloads only parts of
the algorithm such as the assignment [10], [12]. The benefit of
offloading the entire algorithm due to reduced communication
with the CPU, was shown by [11]. In addition to implementing
the entire algorithm in the FPGA, our design provides runtime
parametrization in terms of number of clusters and dimensions.

Several recent efforts use OpenCL [2], [3] to accelerate
K-means clustering on FPGAs: [2] reports up to 11 GB/s
of throughput which is similar to ours but neglecting the
data transfer between host and device and only providing
limited flexibility in the number of clusters, while the number
of dimensions is fixed. Further, they target an accelerator
deployment, whereas our design targets hybrid architectures.
Hussain et al. [13] present a K-means implementation that
achieves flexibility through partial reconfiguration allowing to
change the distance function or run multiple K-means kernels
on different datasets in parallel.

In software, the algorithm is compute-bound for most pa-
rameter combinations, therefore techniques such as vectoriza-
tion [1] lead to significant speedups.

VI. CONCLUSION

The presented K-means implementation features flexibility
in terms of runtime parameterization and memory bandwidth
usage while having comparable performance to an optimized
multi-core CPU implementation and out-performing existing
FPGA solutions. The trade-off between memory bandwidth
usage and performance can be adjusted through the assignment
of pipelines to a single or multiple K-means configurations.

ACKNOWLEDGMENT

We would like to thank Intel for their generous donation of
the Xeon+FPGA prototypes. This work is partially funded by
Microsoft through the Swiss Joint Research Center.

REFERENCES

[1] C. Böhm, M. Perdacher, et al., “Multi-core K-means,” in SIAM’17.
[2] Q. Y. Tang and M. A. Khalid, “Acceleration of K-means algorithm using

Altera SDK for OpenCL,” ACM TRETS, vol. 10, no. 1, p. 6, 2016.
[3] Z. Wang et al., “Melia: A MapReduce framework on OpenCL-based

FPGAs,” IEEE Transactions on Parallel and Distributed Systems, 2016.
[4] D. Sidler, Z. István, et al., “doppioDB: A hardware accelerated

database,” in SIGMOD’17.
[5] K. Kara, D. Alistarh, et al., “FPGA-accelerated dense linear machine

learning: A precision-convergence trade-off,” in FCCM’17.
[6] M. Owaida and G. Alonso, “Application partitioning on FPGA clusters:

Inference over decision tree ensembles,” in FPL’18.
[7] M. Owaida, D. Sidler, et al., “Centaur: A framework for hybrid CPU-

FPGA databases,” in FCCM’17.
[8] T. Saegusa and T. Maruyama, “An FPGA implementation of K-means

clustering for color images based on Kd-tree,” in FPL’06.
[9] X. Wang and M. Leeser, “K-Means clustering for multispectral images

using floating-point divide,” in FCCM’07.
[10] M. Gokhale, J. Frigo, et al., “Experience with a hybrid processor: K-

Means clustering,” The Journal of Supercomputing, 2003.
[11] W.-C. Liu, J.-L. Huang, et al., “Kacu: K-means with hardware centroid-

updating,” in Conference, Emerging Information Technology 2005.
[12] M. Estlick et al., “Algorithmic transformations in the implementation of

K-means clustering on reconfigurable hardware,” in FPGA’01.
[13] H. M. Hussain, K. Benkrid, et al., “Novel dynamic partial reconfigu-

ration implementation of k-means clustering on FPGAs: Comparative
results with GPPs and GPUs,” Int. J. Reconfig. Comput., 2012.


	Introduction
	K-means Algorithm
	Design Overview
	Controller
	Assignment Pipeline
	Update Module
	Run-time parametrization
	Software Integration

	Evaluation
	Setup
	Flexibility
	Throughput
	Exploration: Elbow mode
	Resource Usage

	Related Work
	Conclusion
	References

